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Cuntz C∗-algebras

Definition (Cuntz)

O2 = C ∗< s1, s2 ; 1 = s∗1 s1 = s∗2 s2 =
∑

i=1,2
si s
∗
i >

O∞ = C ∗< s1, s2, s3, . . . ; 1 = s∗msm =
∑
m

sms
∗
m >



Strongly Self-Absorbing C∗-algebras

Definition (Toms, Winter)
a) Let θ1, θ2 : A→ B be two u.c.p. maps.

Then θ1 ≈a.u. θ2 if and only if there is {vn} in U(B) with
‖θ2(a)− vnθ1(a)v∗n‖ −→m→∞

0 (a ∈ A).

b) A unital C∗-algebra D is strongly self-absorbing (SSA) iff
there is an isom. π : D → D ⊗ D with π ≈a.u. ıD ⊗ 1D

Remark D separable unital SSA C∗-algebra ⇒
D simple+nuclear+K1-injective C∗-algebra

Definition A non-zero unital C∗-algebra D is K1-injective if
any unitary v ∈ U(D) with [v ] = [1D ] in K1(D) satisfies v ∼h 1D
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Examples of Strongly Self-Absorbing C∗-algebras

– The Cuntz algebra O2 = C ∗< s1, s2 ; 1 = s∗1 s1 = s∗2 s2 =
∑

i=1,2
si s
∗
i >

And the C∗-algebra O∞ = C ∗< s1, s2, s3, . . . ; 1 = s∗msm =
∑
m

sms
∗
m >

– Mk∞(C) := lim
m→∞

Mk(C)⊗m

– The Jiang-Su algebra Z = lim
n→∞

Zpn,qn , where

Zpn,qn = {f ∈ C ([0, 1];Mpn(C)⊗Mqn(C) ;
f (0) ∈ Mpn(C)⊗ C and f (1) ∈ C⊗Mqn(C)}

–
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Continuous deformations

Let X be a compact Hausdorff space.

Definition (Dixmier; Fell; Tomiyama)
A unital continuous C∗-bundle over X

with non-zero unital fibres Ax (x ∈ X)

is a unital C∗-subalgebra A ⊂
∏

x∈X Ax such that:

(a) There is a unital ∗-embedding C (X)→ A given by

f 7→ (f (x)1Ax ) for all f ∈ C (X)

(b) For all x ∈ X, the fibre map A→ Ax is surjective.

(c) ∀ (ax)x∈X ∈ A, x 7→ ‖ax‖Ax is continuous.
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Stability under deformation

– Let D0 be a unital separable SSA C∗-algebra.

– Let Xn = [0, 1]n with n <∞. (finite dimension)

– Let D(n) be a unital continuous C (Xn)-algebra
with D(n)x ∼= D0 for all x ∈ Xn.

Proposition (Hirshberg, Rørdam, Winter)
There is an isomorphism of C (Xn)-algebra D(n) ∼= C (Xn;D0).

Proposition (Dădărlat)
If X = [0, 1]∞ is the compact Hilbert cube

with d(x , y) =
∑

p 2−p−1 |xp − yp|
and G0,G1 are two countable abelian torsion groups,
there exists a unital continuous C (X)-algebra D with
– ∀ x ∈ X , Dx

∼= D0 = O2 and
– Ki (D) = C (K ,Gi ) for i = 0, 1.

Thus, D 6∼= C (X;O2).
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A question of local triviality

Question. What happens if the SSA C∗-algebra D0 is D0 = O∞?

– Let E be a Hilbert C (X)-module with infinite dimension fibres.
– Let F(E ) be the full Fock Hilbert C (X)-module

F(E ) = C (X)⊕ E ⊕ E ⊗C(X ) E ⊕ . . .

There is an isomorphism F(E ) ∼= `2(N)⊗ C (X).

– `(ζ) ∈ LC(X)(F(E ) ) s.t. `(ζ).[ζ1⊗ . . .⊗ ζm] = ζ ⊗ ζ1⊗ . . .⊗ ζm

– TC(X)(E ) := C ∗
(
`(ζ) ; ζ ∈ E

)
⊂ LC(X)(F(E ) ).

Proposition (B., Kirchberg)
TC(X)(E ) is a unital continuous C (X)-algebra

with TC(X)(E )x ∼= T (Ex) = O∞ (x ∈ X).
Hence TC(X)(E ) is a locally purely infinite C∗-algebra.
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A question of triviality

Question: Is there an isomorphism TC(X)(E ) ∼= C (X;O∞)?

– Let Xk := {(xm)m ∈ X ; xm = 0 for all m > k}.

Proposition (Dădărlat, Winter)
There is an isomorphism of C (Xk)-algebra

TC(X)(E )|Xk
∼= C (Xk ;O∞)

– If γk(f )(x0, . . . , xk , 0, . . .) = f (x0, . . . , xk , 0, 0, . . .)
for (f , x) ∈ C (Xk+1)× Xk ,

C (X) = lim
←−

k∈N∗

(
C (Xk) , γk

)
and TC(X)(E ) = lim

←−
k∈N∗

(
TC(X)(E )|Xk

, γk
)

– But the functor lim
←−

k∈N∗
is not continuous...
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A question of pure infiniteness

Question: Is TC(X)(E ) ∼= TC(X)(E )⊗O∞?

Proposition (B., Dădărlat, Kirchberg, Rørdam, Toms, Winter)
The following assertions are equivalent:

a) TC(X)(E ) ∼= TC(X)(E )⊗O∞.

b) TC(X)(E ) purely infinite C∗-algebra.

c) ∀x ∈ X, ∃ x ∈
o

F (x) ⊂ F (x) with TC(X)(E )|F (x) purely infinite.

 local problem
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A question of proper infiniteness

Question: Is there a unital embedding O∞ ↪→ TC(X)(E )?

– TC(X)(E )x = T (Ex) ∼= O∞ (x ∈ X)

 O∞ ↪→ TC(X)(E )|F (x)

 X =
o
F1 ∪ . . . ∪

o
Fn and O∞ ↪→ M2n−1

(
TC(X)(E )

)
Proposition (Rørdam)
There is a unital C∗-algebra A such that

O∞ ↪→ M2(A) but O∞ 6↪→ A.

Proposition (B., Rohde, Rørdam)

If all the TC(X)(E )|Fk∩(F1∪...∪Fk−1) are K1-injective (2 ≤ k ≤ n),

then the C∗-algebra TC(X)(E ) is properly infinite.



A question of proper infiniteness

Question: Is there a unital embedding O∞ ↪→ TC(X)(E )?

– TC(X)(E )x = T (Ex) ∼= O∞ (x ∈ X)

 O∞ ↪→ TC(X)(E )|F (x)

 X =
o
F1 ∪ . . . ∪

o
Fn and O∞ ↪→ M2n−1

(
TC(X)(E )

)
Proposition (Rørdam)
There is a unital C∗-algebra A such that

O∞ ↪→ M2(A) but O∞ 6↪→ A.

Proposition (B., Rohde, Rørdam)

If all the TC(X)(E )|Fk∩(F1∪...∪Fk−1) are K1-injective (2 ≤ k ≤ n),

then the C∗-algebra TC(X)(E ) is properly infinite.



A question of proper infiniteness

Question: Is there a unital embedding O∞ ↪→ TC(X)(E )?

– TC(X)(E )x = T (Ex) ∼= O∞

(x ∈ X)

 O∞ ↪→ TC(X)(E )|F (x)

 X =
o
F1 ∪ . . . ∪

o
Fn and O∞ ↪→ M2n−1

(
TC(X)(E )

)
Proposition (Rørdam)
There is a unital C∗-algebra A such that

O∞ ↪→ M2(A) but O∞ 6↪→ A.

Proposition (B., Rohde, Rørdam)

If all the TC(X)(E )|Fk∩(F1∪...∪Fk−1) are K1-injective (2 ≤ k ≤ n),

then the C∗-algebra TC(X)(E ) is properly infinite.



A question of proper infiniteness

Question: Is there a unital embedding O∞ ↪→ TC(X)(E )?

– TC(X)(E )x = T (Ex) ∼= O∞ (x ∈ X)

 O∞ ↪→ TC(X)(E )|F (x)

 X =
o
F1 ∪ . . . ∪

o
Fn and O∞ ↪→ M2n−1

(
TC(X)(E )

)
Proposition (Rørdam)
There is a unital C∗-algebra A such that

O∞ ↪→ M2(A) but O∞ 6↪→ A.

Proposition (B., Rohde, Rørdam)

If all the TC(X)(E )|Fk∩(F1∪...∪Fk−1) are K1-injective (2 ≤ k ≤ n),

then the C∗-algebra TC(X)(E ) is properly infinite.



A question of proper infiniteness

Question: Is there a unital embedding O∞ ↪→ TC(X)(E )?

– TC(X)(E )x = T (Ex) ∼= O∞ (x ∈ X)

 O∞ ↪→ TC(X)(E )|F (x)

 X =
o
F1 ∪ . . . ∪

o
Fn and O∞ ↪→ M2n−1

(
TC(X)(E )

)
Proposition (Rørdam)
There is a unital C∗-algebra A such that

O∞ ↪→ M2(A) but O∞ 6↪→ A.

Proposition (B., Rohde, Rørdam)

If all the TC(X)(E )|Fk∩(F1∪...∪Fk−1) are K1-injective (2 ≤ k ≤ n),

then the C∗-algebra TC(X)(E ) is properly infinite.



A question of proper infiniteness

Question: Is there a unital embedding O∞ ↪→ TC(X)(E )?

– TC(X)(E )x = T (Ex) ∼= O∞ (x ∈ X)

 O∞ ↪→ TC(X)(E )|F (x)

 X =
o
F1 ∪ . . . ∪

o
Fn and O∞ ↪→ M2n−1

(
TC(X)(E )

)

Proposition (Rørdam)
There is a unital C∗-algebra A such that

O∞ ↪→ M2(A) but O∞ 6↪→ A.

Proposition (B., Rohde, Rørdam)

If all the TC(X)(E )|Fk∩(F1∪...∪Fk−1) are K1-injective (2 ≤ k ≤ n),

then the C∗-algebra TC(X)(E ) is properly infinite.



A question of proper infiniteness

Question: Is there a unital embedding O∞ ↪→ TC(X)(E )?

– TC(X)(E )x = T (Ex) ∼= O∞ (x ∈ X)

 O∞ ↪→ TC(X)(E )|F (x)

 X =
o
F1 ∪ . . . ∪

o
Fn and O∞ ↪→ M2n−1

(
TC(X)(E )

)
Proposition (Rørdam)
There is a unital C∗-algebra A such that

O∞ ↪→ M2(A)

but O∞ 6↪→ A.

Proposition (B., Rohde, Rørdam)

If all the TC(X)(E )|Fk∩(F1∪...∪Fk−1) are K1-injective (2 ≤ k ≤ n),

then the C∗-algebra TC(X)(E ) is properly infinite.



A question of proper infiniteness

Question: Is there a unital embedding O∞ ↪→ TC(X)(E )?

– TC(X)(E )x = T (Ex) ∼= O∞ (x ∈ X)

 O∞ ↪→ TC(X)(E )|F (x)

 X =
o
F1 ∪ . . . ∪

o
Fn and O∞ ↪→ M2n−1

(
TC(X)(E )

)
Proposition (Rørdam)
There is a unital C∗-algebra A such that

O∞ ↪→ M2(A) but O∞ 6↪→ A.

Proposition (B., Rohde, Rørdam)

If all the TC(X)(E )|Fk∩(F1∪...∪Fk−1) are K1-injective (2 ≤ k ≤ n),

then the C∗-algebra TC(X)(E ) is properly infinite.



A question of proper infiniteness

Question: Is there a unital embedding O∞ ↪→ TC(X)(E )?

– TC(X)(E )x = T (Ex) ∼= O∞ (x ∈ X)

 O∞ ↪→ TC(X)(E )|F (x)

 X =
o
F1 ∪ . . . ∪

o
Fn and O∞ ↪→ M2n−1

(
TC(X)(E )

)
Proposition (Rørdam)
There is a unital C∗-algebra A such that

O∞ ↪→ M2(A) but O∞ 6↪→ A.

Proposition (B., Rohde, Rørdam)

If all the TC(X)(E )|Fk∩(F1∪...∪Fk−1) are K1-injective (2 ≤ k ≤ n),

then the C∗-algebra TC(X)(E ) is properly infinite.



A question of proper infiniteness

Question: Is there a unital embedding O∞ ↪→ TC(X)(E )?

– TC(X)(E )x = T (Ex) ∼= O∞ (x ∈ X)

 O∞ ↪→ TC(X)(E )|F (x)

 X =
o
F1 ∪ . . . ∪

o
Fn and O∞ ↪→ M2n−1

(
TC(X)(E )

)
Proposition (Rørdam)
There is a unital C∗-algebra A such that

O∞ ↪→ M2(A) but O∞ 6↪→ A.

Proposition (B., Rohde, Rørdam)

If all the TC(X)(E )|Fk∩(F1∪...∪Fk−1) are K1-injective (2 ≤ k ≤ n),

then the C∗-algebra TC(X)(E ) is properly infinite.



Another question of proper infiniteness

– Let E be a Hilbert C (X)-module with infinite dimension fibres.

Proposition. (Pimsner)
There is a unique coaction:

TC(X)(C (X)⊕ E )
α−→ TC(X)(C (X)⊕ E )⊗ C (T)

`(ζ) 7−→ `(ζ)⊗ z

Proposition. (Dykema, Shlyakhtenko)

TC(X)(C (X)⊕ E ) = C ∗ < TC(X)(C (X)⊕ E )α, L > with L = `(1C(X) ⊕ 0)

= TC(X)(C (X)⊕ E )α oβ N with β(a) = L.a.L∗

Proposition. (B., Kirchberg)

TC(X)(C (X)⊕ E ) = TC(X)(C (X)⊕ E )α oβ N properly infinite

∪
TC(X)( 0 ⊕ E ) Mp(TC(X)(0⊕ E ) )

Substance of the Proof.

um =
n∑

k=1

(φk)1/2.`(0⊕ ζk)mn+k .L isometry in TC(X)(C (X)⊕ E )
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Local and Global Pure Infiniteness

– If E = C (X)⊕ E ′ , then TC(X)(E ) is properly infinite .

– TC(X)(E )⊗Mp(C) properly infinite for p >> 1.

Proof. T (Ex) ∼= O∞ semiprojective .
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The Dixmier-Douady Hilbert C (X)-module

– X = [0, 1]∞ is the Hilbert cube when endowed with the distance
d(x , y) =

∑
p 2−p |xp − yp|

– `∞
(
X;C⊕ `2(N∗)

)
3 η : x 7→ (

√
1− ‖x‖2, x) .

– E := (1− θη,η)C (X; 0⊕ `2(N∗)) ⊂ `∞(X; `2(N)) ∩ η⊥
Dixmier-Douady Hilbert C (X)-module.

Proposition.
There is no unital embedding of C (X)-algebra

C ∗
(
`(E)

)
= TC(X)(E)

θ
↪−→ TC(X)(E)

Proof. Let Ψ : C (T)→ C be the Haar state and suppose θ exists.
Then (θ⊗Ψ)αE : TC(X)(E)αE → TC(X)(E)αE unital ∗-homomorphism

But this cannot be.
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End of the proof

– ker
(
TC(X)(E )αE → C (X)

)
:=

[∑
k≥1

`(E )k .
(
`(E )k

)∗ ]

– If E = `2(N)⊗ C (X), then

ker
(
TC(X)(E)αE → C (X)

)
∼= TC(X)(E)αE ⊗K (`2(N)) is stable

And so O∞ ↪→M(ker
(
TC(X)(E)αE → C (X)

)
) unital embedding.

– If E is the Dixmier–Douady Hilbert C (X)-module, then

ker
(
TC(X)(E)αE → C (X)

)
� KC(X)(E) are not stable

because LC(X)(E) is not properly infinite (B., Kirchberg).

And so O∞ 6↪→ LC(X)(E)
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Concluding remark

Theorem

– The l.p.i. C (X)-algebra TC(X)(E) is not properly infinite.

.

– Mp

(
TC(X)(E)

)
is properly infinite for all p large enough.

– Some quotient of TC(X)(E) is a properly infinite C∗-algebra

which is not K1-injective .
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