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Definition (Cuntz)

R * . — * — * — *
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m



Strongly Self-Absorbing C*-algebras

Definition (Toms, Winter)
a) Let 61,602 : A — B be two u.c.p. maps.



Strongly Self-Absorbing C*-algebras

Definition (Toms, Winter)

a) Let 61,602 : A — B be two u.c.p. maps.

Then 01 ~, . 6, if and only if there is {v,} in U(B) with
102(a) = vabi(a)vall — 0 (a < A).



Strongly Self-Absorbing C*-algebras

Definition (Toms, Winter)

a) Let 61,602 : A — B be two u.c.p. maps.

Then 01 ~, . 6, if and only if there is {v,} in U(B) with
102(a) = vabi(a)vall — 0 (a < A).

b) A unital C*-algebra D is strongly self-absorbing (SSA) iff
there is an isom. m: D = D ® D with m =, , 1p ® 1p



Strongly Self-Absorbing C*-algebras

Definition (Toms, Winter)

a) Let 61,602 : A — B be two u.c.p. maps.

Then 01 ~, . 6, if and only if there is {v,} in U(B) with
102(a) = vabi(a)vall — 0 (a < A).

b) A unital C*-algebra D is strongly self-absorbing (SSA) iff
there is an isom. m: D = D ® D with m =, , 1p ® 1p

Remark D separable unital SSA C*-algebra =
D simple+nuclear+Kj-injective C*-algebra



Strongly Self-Absorbing C*-algebras

Definition (Toms, Winter)

a) Let 61,602 : A — B be two u.c.p. maps.

Then 01 ~, . 6, if and only if there is {v,} in U(B) with
102(a) = vabi(a)vall — 0 (a < A).

b) A unital C*-algebra D is strongly self-absorbing (SSA) iff
there is an isom. m: D = D ® D with m =, , 1p ® 1p

Remark D separable unital SSA C*-algebra =
D simple+nuclear+Kj-injective C*-algebra

Definition A non-zero unital C*-algebra D is Ki-injective if
any unitary v € U(D) with [v] = [1p] in Ki(D) satisfies v ~p, 1p
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Let X be a compact Hausdorff space.

Definition (Dixmier; Fell; Tomiyama)
A unital continuous C*-bundle over X
with non-zero unital fibres A, (x € X)

is a unital C*-subalgebra | A C [, cx Ax | such that:

(a) There is a unital *-embedding C(X) — A given by
f— (f(x)1a,) for all f € C(X)

(b) For all x € X, the fibre map A — A, is surjective.

(©) YV (ax)xex €A, x> ||ax][a, is
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Stability under deformation

— Let Dy be a unital separable SSA C*-algebra.
- Let X, =1[0,1]" with n < occ. (finite dimension)

— Let D(n) be a unital continuous C(X,)-algebra
with D(n)yx = Dy for all x € X,,.

Proposition (Hirshberg, Rgrdam, Winter)
There is an isomorphism of C(X,)-algebra D(n) = C(X,; Dy).

Proposition (D3darlat)
If X = [0,1]> is the compact Hilbert cube
with d(x, y) = Zp 27P " xp — |
and Gp, Gy are two countable abelian torsion groups,
there exists a unital continuous C(X)-algebra D with
-VxeX, Dy = Dy = O, and
- Ki(D) = C(K, Gj) for i =0,1.

Thus, D 2 C(X;0).
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A question of local triviality

Question. What happens if the SSA C*-algebra Dy is Dy = O7?

— Let E be a Hilbert C(X)-module with dimension fibres.
— Let F(E) be the full Fock Hilbert C(X)-module

.F(E)—C(%)@E@E@C(X)E@...
There is an isomorphism F(E) = (2(N) ® C(X).
—UC) € Le@)(F(E)) st £ [ ®...@¢m] =(@G®...0¢m

= Te(E) = C* (O CEE)  © Lo (F(E)).

Proposition (B., Kirchberg)
Tc(x)(E) is a unital continuous C(X)-algebra

with Tc(%)(E)X = T(Ex) = O (X S :{)
Hence Tc(x)(E) is a locally purely infinite C*-algebra.
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A question of triviality

Question: Is there an isomorphism T¢(x)(E) = C(X; Ox)?
- Let X = {(xm)m € X; xm =0 for all m > k}.

Proposition (Dadarlat, Winter)
There is an isomorphism of C(Xy)-algebra

Te@)(E)jx, = C(Xki Ox)

- ”’Vk(f)(xo,...,Xk,O,...):: f(Xo,...,Xk,0,0,..J
for (f,x) € C(Xxs1) X Xk,
C(X) = lim (C(Xk), ) and Te)(E) = lim (T (E)x, » %)
keN* keN*

— But the functor lim is not continuous...
o
keN*
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Question: Is Tc(x)(E) = Tc(x)(E) ® O

Proposition (B., Dadarlat, Kirchberg, Rgrdam, Toms, Winter)
The following assertions are equivalent:

a) Tex)(E) = Tex)(E) ® O
b) Tc(x)(E) purely infinite C*-algebra.

o

c) Vx € X, Ix € F(x) C F(x) with Tex)(E)|f(x) purely infinite.

~> local problem
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A question of proper infiniteness

Question: Is there a unital embedding O — Tc(x)(E)?

- TC(BE)(E)X = T(Ex) = O (x € X)
v Ooo = Tex)(E)F(x)

e X=FU...UF and O < My (Teg(E))
Proposition (Rgrdam)

There is a unital C*-algebra A such that
Oso = Mr(A) but Oy 4 A

Proposition (B., Rohde, Rgrdam)

If all the Te(x)(E)|Fn(Ru. uF,_,) are (2< k< n),

then the C*-algebra T¢(x)(E) is properly infinite.
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Another question of proper infiniteness

— Let E be a Hilbert C(X)-module with infinite dimension fibres.

Proposition. (Pimsner)
There is a unique coaction:

Tc(x)(C(%) ®E) N Tc(x)(C(%) ®E)® C(T)
(<) — W)@z
Proposition. (Dykema, Shlyakhtenko)
Tc(x)(C(}:) DE)= C*< Tc(x)(C(ff) @®E), L> with|L= ﬂ(lc(gg) @ 0)
= TC(%)(C(%) D E)a X3 N with B(a) =L.al*
Proposition. (B., Kirchberg)
Te@)(C(X) @ E) = Tex)(C(X)@ E)* xg N properly infinite
U
Te)( 0 @ E) My(Tc() (0@ E))

Substa,r71ce of the Proof.

um = > (¢x)Y2.L(0 @ )™k isometry in Te(x)(C(X) & E)
k=1
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Local and Global Pure Infiniteness

-fE=C(X)d E, then T¢(x)(E) is ‘ properly infinite |.

= Tex)(E) ® Mp(C)  properly infinite for p>> 1.

Proof. T(Ex) = O .
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The Dixmier-Douady Hilbert C(X)-module
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C*(ﬁ(E)) = Tc@)(E) i) Te)(€)

Proof. Let W : C(T) — C be the Haar state and suppose 0 exists.
Then (0@ W)ag : Tex)(E)*® — Tex)(£)*¢ unital x-homomorphism
But this cannot be.
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Concluding remark

Theorem

- The C(X)-algebra T¢(x)(€) is not ’ properly infinite. |.

- M, (Tc(x)(5)> is properly infinite for all p large enough.

— Some quotient of T¢(x)(£) is a ’ properly infinite | C*-algebra

which is not .




